Menofia University Faculty of Engineering Shebien El-kom Basic Engineering Sci. Department. Academic Year: 2017-2018 Date: 6/1/2018

Subject : Numerical Analysis Code: BES 512 Time Allowed: 3 hours Year : Master Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

Q.1	(A) State the Classification of Partial Differential Equations? And state the	[25]					
	various types of boundary conditions?						
	(B) Write brief notes on the following topics:i) Consistency.						
	ii) Stability.						
	iii) Convergence.						
	iv) Lax's equivalence theorem.						
	(C) The governing equations of motion for one-dimensional, inviscid flows						
	are given by the Euler equations. If the assumption of perfect gas is						
	imposed, the system is written as:						
	$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$						
	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$						
	$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho \ a^2 \frac{\partial u}{\partial x} = 0$						
Rooman and a second	Classified this system?						
Q.2	(A) Determine the approximate forward difference representation for	[25]					
1.0 . 8.9	$\partial^3 f / \partial x^3$ which is of the order (Δx), given evenly spaced grid points f_i ,						
	$f_{i+1}, f_{i+2}, f_{i+3}$ by means of:						
	i) Taylor series expansion.						
	ii) Forward difference recurrence formula.						
	iii) A third-degree polynomial passing through the four points.						
	(B) For the function $f(x) = sin(2\pi x)$, determine $\partial f / \partial x$ at $x = 0.375$ using						
	central difference representation of order $(\Delta x)^2$ and order $(\Delta x)^4$. Use						

analytical solution and discuss the results.

step sizes of 0.01, 0.1 and 0.25. Compare the result with the exact

Q.4 (A) The governing equation of a uniform Bernoulli-Euler beam under [25] pure bending resting on fluid layer under axial force is: $\frac{\partial^4 w}{\partial x^4} + P \frac{\partial^2 w}{\partial x^2} + K_f w + F(x,t) = 0, \quad 0 \le x \le L.$ with boundary conditions (Clamped-Simply supported): at x = 0, W(x) = 0at x = 0, $\frac{dW(x)}{dx} = 0$ at x = L W(x) = 0at x = L W(x) = 0Solve the beam equation problem using the adomian decomposition method (ADM). Then compared the results with exact solutions, in the following form: F(x, y) = 1.(B) define and gives examples of: i) Discrete Perturbation Stability Analysis.

ii) Von Neumann Stability Analysis.

iii) Artificial Viscosity.

(C) State the application and limitations of the von Neumann stability analysis

This exam measures the following ILOs											
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c			
	Q4-b				Q2-b	Q2-c	Q3-c				
	Knowledge &understanding skills			g skills	Intellectual Skills		Professional Skills				

Good Luck Dr. Ramzy M. Abumandour